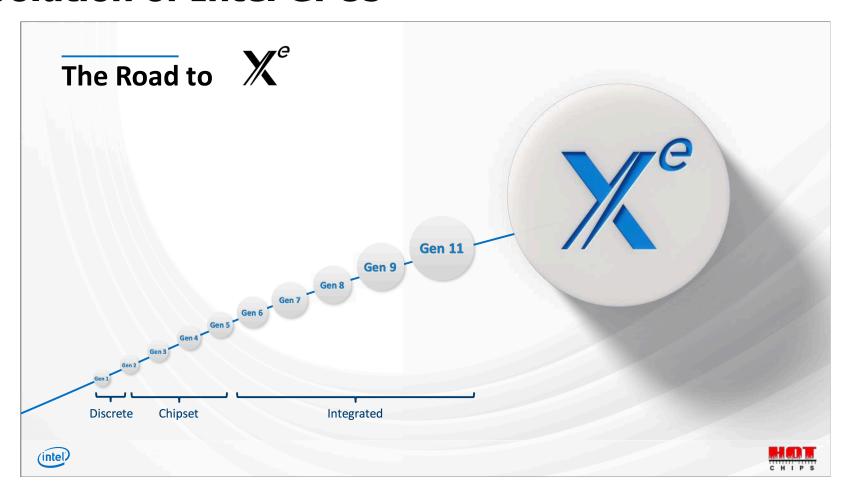


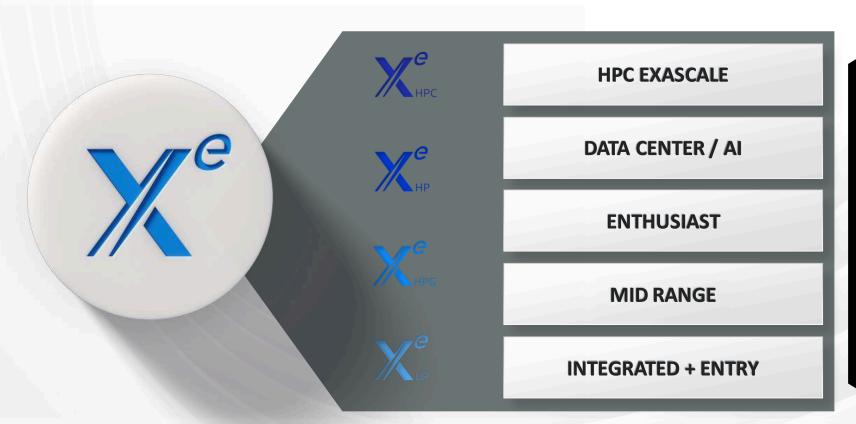
Aurora – Exascale at Argonne

P3HPC Forum Meeting, Sept 1-2 Scott Parker Argonne Leadership Computing Facility

www.anl.gov

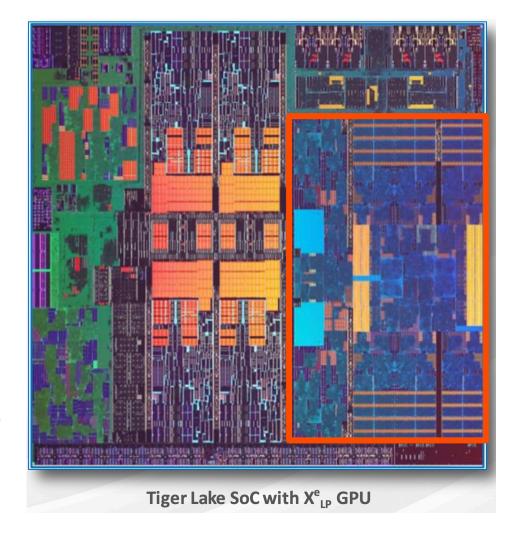
Aurora: A High-level View


- ☐ Intel-Cray machine arriving at Argonne in 2021:
 - ☐ Sustained Performance > 1 Exaflops
 - ☐ Greater than 10 PB of total memory
- Node has Intel Xeon processors and Intel Xe GPUs:
 - 2 Xeons (Sapphire Rapids)
 - ☐ 6 GPUs (Ponte Vecchio [PVC])
 - ☐ Unified Memory Architecture across CPUs and GPUs
- ☐ Cray Slingshot fabric and Shasta platform:
 - 8 endpoints per node
- Novel high-performance filesystem:
 - ☐ Distributed Asynchronous Object Store (DAOS)
 - \supseteq 230 PB of storage capacity
 - ☐ Bandwidth of > 25 TB/s
 - Lustre
 - □ 150 PB of storage capacity
 - Bandwidth of ~1TB/s


Evolution of Intel GPUs

Intel GPU Architecture

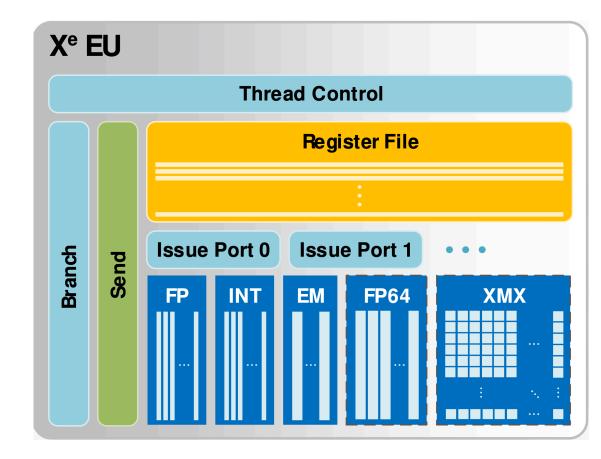
One Architecture and 4 Micro Architectures



Teraflops to Petaflops

Current Intel GPUs

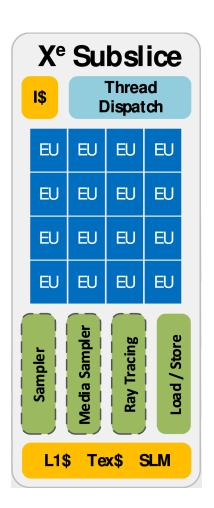
- Xe LP
 - □ Platforms: Tiger Lake, DG1, SG1
 - ☐ Integrated & discrete
- ☐Gen 11
 - Platforms: Ice Lake
 - Integrated
- Gen 9
 - □ Platforms: Skylake
 - Integrated
 - □ Double precision peak performance: 100-300 GF
- All have relatively low FP64 performance by design due to power and space limits



XE Execution Unit

The EU executes instructions:

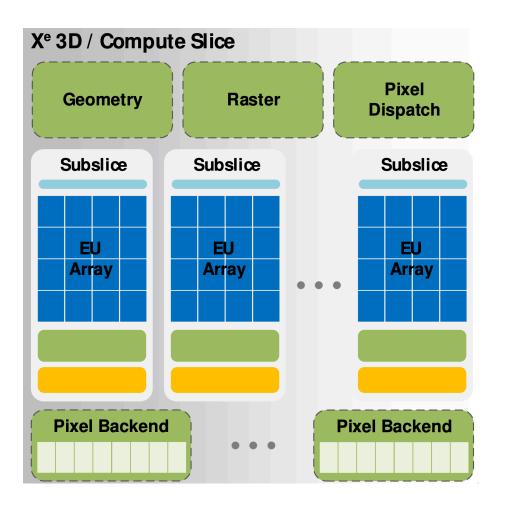
- Register file
- Multiple issue ports
- Vector pipelines:
 - Floating Point
 - Integer
 - Extended Math
 - FP64 (optional)
 - Matrix Extension (XMX) (optional)
- Thread control
- Branch
- Send (memory)



XE Subslice

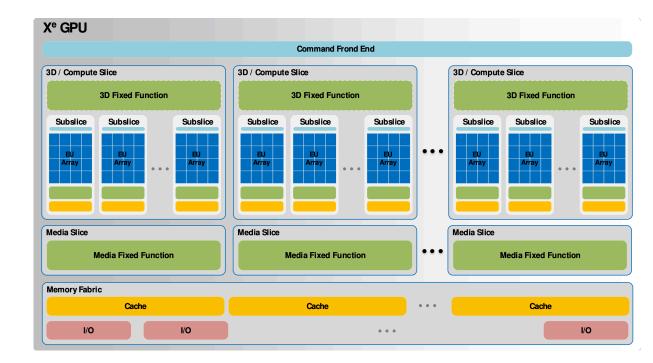
A sub-slice contains:

- 16 EUs
- Thread dispatch
- Instruction cache
- L1, texture cache, and share local memory
- Load/Store
- Fixed Function (optional)
 - 3D sampler
 - Media Sampler
 - Ray Tracing



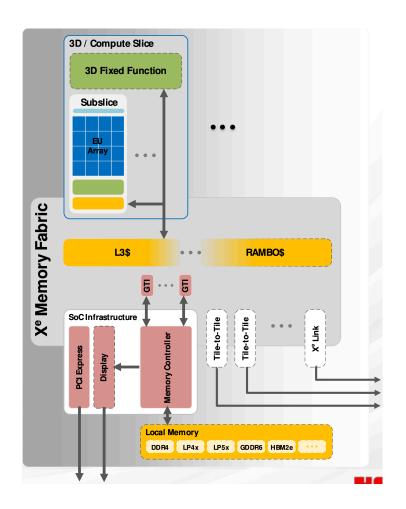
Xe 3D/Compute Slice

A slice contains:


- Variable number of subslices
- 3D Fixed Function (optional)
 - Geometry
 - Raster

High Level Xe Architecture

- Xe GPU is composed of:
 - 3D/Compute Slice
 - Media Slice
 - Memory Fabric / Cache



XE Memory Fabric

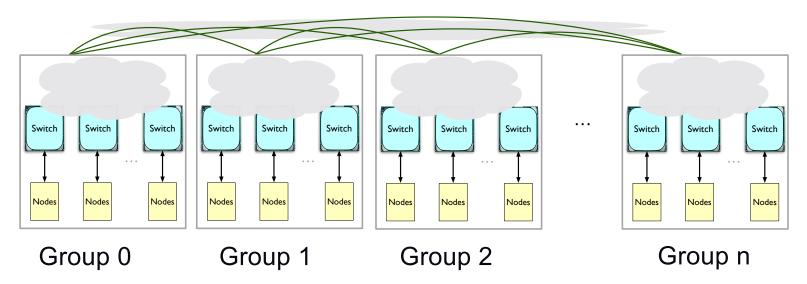
Coherent Scalable Interconnect Fabric

- L3 + Rambo Cache (optional)
- SoC infrastructure
 - PCle
 - Display (optional)
 - Memory Controller
 - Local Memory (optional)

Cray Slingshot Network

- Slingshot is next generation scalable interconnect by Cray
 - 8th major generation
- ☐ Builds on Cray's expertise in high performance network following
 - ☐ Gemini (Titan, Blue Waters)
 - ☐ Aries (Theta, Cori)
 - ☐ 5 hop dragonfly topology
- ☐Slingshot introduces:
 - ☐ Congestion management
 - ☐ Traffic classes
 - □ 3 hop dragonfly

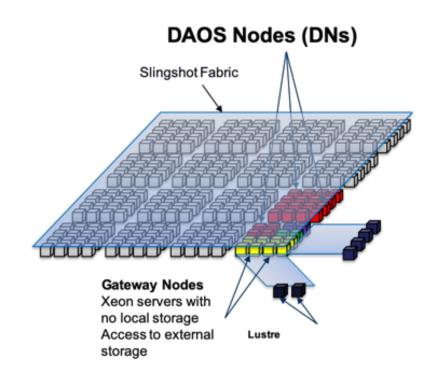
Cray Slingshot


https://www.cray.com/products/computing/slingshot https://www.cray.com/resources/slingshot-interconnect-for-exascale-era

Dragonfly Topology

- ☐ Two layer all-to-all topology
- □ Nodes are organized into a number of groups
- □All-to-all connectivity between nodes within the groups
- ☐Groups are connected together in an all-to-all fashion at the group level

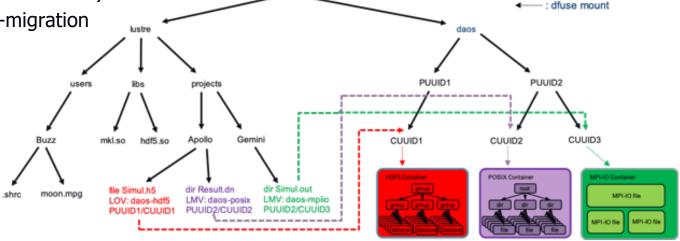
All to All



https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf

Distributed Asynchronous Object Store (DAOS)

- ■Primary storage system for Aurora
- ☐ High performance and capacity:
 - □ ≥ 230 PB capacity
 - ≥ 25 TB/s
- Persistent storage, not a burst buffer
- ☐ Provides compatibility with existing I/O models such as POSIX, MPI-IO and HDF5
- ☐ Open source storage solution
- ☐ Provides a flexible storage API that enables new I/O paradigms



--: symlink

DAOS and Lustre

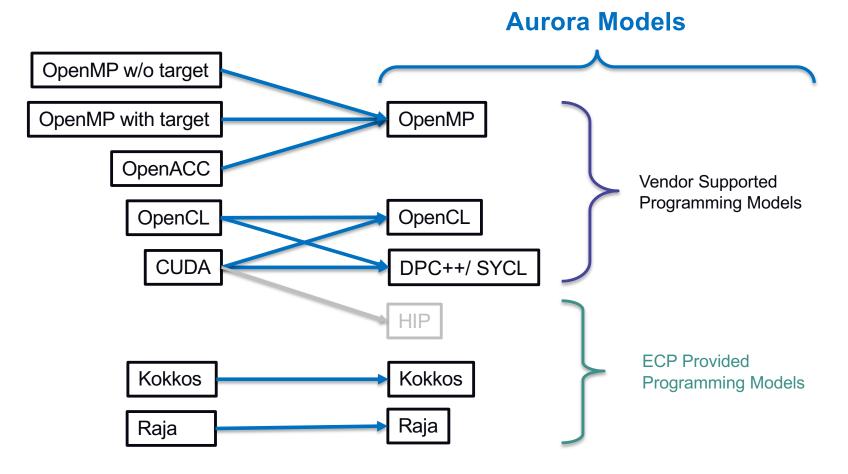
- ☐ Aurora will provide both DOAS and Lustre file systems
- ☐ User see single storage namespace which is in Lustre
 - ☐ Links point to DAOS containers within the /project directory
 - ☐ DAOS aware software interpret these links and access the DAOS containers
- ☐ Data resides in a single place (Lustre or DAOS)
 - ☐ Explicit data movement, no auto-migration
- ☐Suggested storage locations
 - Source and binaries in Lustre
 - Bulk data in DAOS

Programming Models for Exascale Systems

- Applications will be using a variety of programming models for Exascale:
 - CUDA
 - OpenCL
 - HIP
 - OpenACC
 - OpenMP
 - □ DPC++/SYCL
 - Kokkos
 - Raja
- □ Not all systems will support all models

Programming Models For Aurora

- ☐ Aurora applications may use:
 - -CUDA
 - OpenCL
 - ☐ HIP
 - OpenACC
 - OpenMP
 - □ DPC++/SYCL
 - Kokkos
 - Raja



Possible Paths to Aurora

oneAPI

- ☐ Industry specification from Intel (https://www.oneapi.com/spec/)
 - □ Language and libraries to target programming across diverse architectures (DPC++, APIs, low level interface)
- ☐ Intel oneAPI products and toolkits (https://software.intel.com/ONEAPI)
 - ☐ Implementations of the oneAPI specification and analysis and debug tools to help programming

Aurora Software Stack

□ Languages:
□ Fortran (with OpenMP 5)
□ C/C++ (with OpenMP 5)
□ DPC++
□ Python
□ Libraries:
□ oneAPI MKL (oneMKL)
□ oneAPI Deep Neural Network Library (one DNN)
□ oneAPI Data Analytics Library (oneDAL)
□ MPI
□ Tools:
□ Intel Advisor
□ Intel Vtune
□ Intel Inspector

Aurora Testbeds

- ☐Intel DevCloud
 - Provides free access to GPU hardware and oneAPI software
 - https://devcloud.intel.com/oneapi/get-started/
- ☐ Local Setup
 - ☐ Download Intel oneAPI public beta
 - https://software.intel.com/content/www/us/en/develop/tools/ oneapi.html
 - ☐ Run on Intel CPU with integrated graphics
- ☐ Argonne JLSE testbeds for Aurora
 - 20 Nodes of Intel Xeons with Gen9 Iris Pro integrated GPU
 - □ DG1 nodes
 - ☐ Intel's Aurora oneAPI SDK [NDA required]

Argonne Joint Laboratory for System Evaluation

